®

Check for
updates

LICOR: Beyond the Design System. A Proposal
to Empower Teams to Develop Software
in Compliance with the Principles
of Accessibility, Usability, and Privacy by Design
in the Extreme Contexts and Challenging
Domains Post-COVID-19

Deivith Silva Matias de Oliveira! ® @, Francisco C. M. B. Oliveira! ®,
Claudia A. C. Pernencar? @, Breno S. de Morais!, Jodo W. Silva!,
Antonio R. B. Costa!, Joaquim B. C. Pereira®, and Inga F. Saboia*

1 Department of Computer Science, State University of Ceard, Fortaleza, Ceard, Brazil
deivith.oliveira@aluno.uece.br, fran.oliveira@uece.br,
{breno.morais,weslley.silva,rootedy}@ffit.com.br
2 NOVA Institute of Communication, Nova University Lisbon, Lisbon, Portugal
claudiapernencar@fcsh.unl.pt
3 Institute UFC Virtual, Federal University of Ceard, Fortaleza, Cear4, Brazil
4 Department of Communication and Art, Aveiro University, Aveiro, Portugal
inga@virtual.ufc.br

Abstract. During the pandemic, people were asked to stay at home, which
increased the demand for software. The quality of the software is improving as
a result of this trend. In response, companies have accelerated their digitization
processes to provide better quality software that is more accessible, user-friendly,
and secure. Since the pandemic, software development teams around the world
have struggled to meet deadlines during uncertain times. This poster addresses
the difficulties developers and designers face in developing and managing digital
health software. This is due to the growing appeal of low and no-code platforms
that are becoming more accessible and user-friendly to non-programmers. The
goal of this project is to develop and evaluate a prototype digital health compo-
nent library known as LICOR. This software development kit contains integrated
digital components designed specifically for the digital health industry. It helps
even non-experts create effective digital health products. The design approach
was developed by combining various theories and techniques such as design sys-
tem principles, domain-oriented design, micro front-ends, and microservices. The
methodology is based on the design-based research approach, which combines
theoretical research with working and coded software artifacts to enable real-
world testing. We are interested in contributions from the community and would
be happy to discuss ethical concerns, bias, and illiteracy in digital health with
academics. Finally, we discuss future research opportunities and the difficulties of
connecting the design phase with the development phase in digital health software
development.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Stephanidis et al. (Eds.): HCII 2022, CCIS 1654, pp. 1-9, 2022.
https://doi.org/10.1007/978-3-031-19679-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19679-9_18&domain=pdf
http://orcid.org/0000-0002-2255-0818
http://orcid.org/0000-0003-3389-3143
http://orcid.org/0000-0001-8981-2133
http://orcid.org/0000-0002-3635-2927
https://doi.org/10.1007/978-3-031-19679-9_18

2 D. S. M. de Oliveira et al.

Keywords: Digital health - Software development - HCI

1 Introduction and Context

With post-Covid-19, the world as we knew it has collapsed in a matter of weeks. Reality
presents itself as a fragile, anxious, non-linear and incomprehensible world - the so-
called BANI world [1]. The current crisis has reached proportions not seen since the
Great Depression [2].

Atthe same time, the pandemic has increased demand for software products as people
have been encouraged to stay home. People are not just demanding more software - they
are demanding better software. Accessibility, usability, and privacy have become key
requirements in today’s world.

The pandemic also had a severe economic impact on businesses in general, forcing
many companies to close their doors. The context COVID -19 has accelerated the digital
transformation of businesses and entire industries such as retail, hospitality, and educa-
tion [2]. Other businesses are increasingly impacted by digital technologies such as the
Internet, mobile connectivity, cloud computing, Big Data, machine learning, artificial
intelligence (AI), blockchain, and the Internet of Things (IoT) [2].

At the same time, consumers now have many more choices [2]. Customers are
increasingly intrigued by digital technologies, forcing traditional businesses to seek
digital transformation. With new or renewed value propositions based on digital tech-
nologies, other companies are moving from one sector to another. As a result, IT teams
are under significant pressure to develop increasingly advanced applications with shorter
deadlines.

Software engineering teams should be adaptable, especially when it comes to struc-
turing the development and design phases [3]. In recent years, large companies have
developed and implemented their own design systems to solve this problem [4, 5].

Design systems became popular because they focus on scaling design decisions and
accelerating code implementation while ensuring software quality and code reuse. [6, 7].
However, unfortunately, because they became so popular as simple Ul example libraries,
they are generally misused in this way. [8]. The goal of a design system is to support the
development of software by providing guidelines that impact the overall user experience
and software development process [9]. Therefore, it is important that everyone on the
team is familiar with these ideas and principles.

To make developers’ jobs easier, libraries such as PrimeFaces [10] ocus on existing,
reusable microservices that are connected to other services, such as an API. This process
promotes more efficient long-term development [11].

On the other hand, most of these libraries are generalists. There are no specific
standards for certain domains such as digital health, which is a major gap. This is a
critical issue since the main role of software is to solve problems relevant to the user’s
domain and situation.

If these fundamental concepts, such as resistance to adoption or even outright exclu-
sion of people due to non-compliance with accessibility standards, are not recognized
by users [12, 13], it can affect their experience.

LICOR: Beyond the Design System 3

The rapid pace at which developers and designers are required to become near experts
in such specialized areas has led to a lack of competent responsed [12]. However, design
techniques can help teams organize their products during development [12].

In the next section, we will detail the primary and secondary objectives of this
research. Just reinforcing that this is still an ongoing project and more detailed results
(as well with your dear participation) will be available soon.

1.1 Objectives

The goal of this study is to develop and evaluate a prototype LICOR component library
that combines theoretical and practical aspects of Design Systems [4, 6], Domain-Driven
Design (DDD) [12, 14], Microservices [15] and Micro-Frontends [16] for building digital
health applications..

The specific objectives are:

1. Learn how to use micro front-end approaches with Design Systems, DDD, and other
methodologies.

a. Identify the most common micro-scenarios of interaction in the health industry;
Design and produce the micro front-ends.

c. Create two different apps that utilize the same domain, one for a medical
consulting and one for medical auditing, utilizing these tiny front-ends;
Analyze the characteristics of these applications with consumers;

e. With this new approach, discuss the building procedure with designers and
developers.

2. Propose other courses of action based on the study’s findings.

3. Investigate how accessibility, usability, and privacy can be integrated into library
components in the user domain.

4. Examine the software to determine whether domain information affects its compli-
ance with code reuse, user experience, usability, accessibility, and privacy.

In the following section, we’ll describe the LICOR library prototype.

1.2 Introducing the LICOR Library Prototype

Our prototype is based on the Material Design System [17]. Due to copyright compliance,
it will be used only for study and internal experimentation only.

The software development process will be the focus of our study, with designers,
coders, clients, and other stakeholders all included. We’ll be able to compare the various
viewpoints like this.

We will create all artifacts, phases, and necessary activities based on Driven Domain
Design [18], which is focused on the digital health sector. Mapping and construction
of the domain, including bounded context, general language, context maps, context
architecture, and domain model patterns are a few examples.

4 D. S. M. de Oliveira et al.

All about our day-to-day equipment now. The Figma [19] program is being used
to create and improve our design system. We’re utilizing Storybook [20] for the code
components library. We’re always trying out new tools, like as Anima [21] or Zeroheigh
[22], and seeing how they impact the way we do research.

We’re also inviting seasoned experts from areas like privacy, accessibility, usability,
and ethics to review and offer constructive criticism on our theoretical framework as
well as the quality of our pre-formatted beta goods.

We must declare that failing quickly is an important goal for us, too. As everyone
who faces the risks of innovation understands, we aim to fail fast in order to learn more
quickly. You will find out what research methods we are utilizing in certain parts of this
paper.

In the following section, we’ll show you a tiny but carefully chosen sample of what
libraries of digital interface components can do for you.

2 Related Works

There are some open resources that companies and professionals are using today to
achieve some of these goals, such as scalability and product consistency.

Popular design systems such as Google’s Material Design [23] and Ant Design [24]
provide a huge repository of design guidelines and materials, components, and templates,
complemented by solid documentation that guides both designers and developers in their
use and implementation.

Moreover, these design systems support various device types, not only the most
popular mobile and desktop devices but also wearable devices and some IoT products.

In addition, these design systems support some widely used technologies used in
digital products, such as popular JavaScript frameworks like React and React Native.

In some cases, such as digital health, the requirements are so stringent that these
resources are not sufficient to enable the development of digital products that meet
users’ needs.

In the following section, we’ll give a quick rundown of our prominent theoretical
references as they assist us in our study.

3 Theoretical Reference

3.1 Design Systems

A design system is a set of interrelated elements that are organized in such a way as
to assist the objectives of digital products [5]. The components we use to construct
an interface are known as patterns: Processes, interactions, buttons, text boxes, icons,
colors, typography, and so on...

One of the most popular design systems today is Material Design, maintained by
Google - currently in its third version [23]. Other examples include Microsoft’s Fluent
[25], IBM’s Carbon [27] and Ant Design, from the Alibaba Group [24].

LICOR: Beyond the Design System 5

Digital Health

According to [28], Digital Health is the combination of information and communication
technologies (ICT) to generate and deliver trusted information about a person’s health
when it is needed.

The term “digital health” is broader than e-health and also includes more recent
technological advances such as social media concepts and applications, the Internet of
Things (IoT), artificial intelligence (AI), and others. Health IT projects aim to identify,
prioritize, and integrate health programs, projects, and policies, as well as information
and communication services and systems. The goal is to turn the vision of ESD into
reality by using digital health for its integration [28].

The Conecte SUS program is a Brazilian federal government program that sup-
ports access to health information and promotes digital engagement between patients
and health professionals. Despite the detailed program and action level, the document
itself notes the need to consider the integration of new information services such as
artificial intelligence (Al), analytics, Big Data, IoT, and other emerging technologies for
knowledge discovery in healthcare. In addition to providing services such as expand-
ing telemedicine and consolidating clinical terminology, the document also addresses
improving telemedicine interoperability and regulating smart healthcare [28].

Looking at the Brazilian scenario, the question is whether all these efforts are compat-
ible with a global strategy for digital health, as promoted by The World Health Organiza-
tion (WHO). An example of this is the WHO ‘Recommendations on digital interventions
for health system strengthening’ to promote the integration of technology worldwide for
advances in health [29].

The WHO promotes the use of digital learning and training methods in the health
professions so that they can be used alongside, rather than in place of, traditional training
methods. WHO [30] advocates the use of cell phones for births, deaths, inventory report-
ing, commodity management, telemedicine, targeted patient communication, decision
support for health workers, and digital tracking of health status and performance in
specific situations.

According to WHO, any digital health tool or technology should be developed and
implemented according to digital development principles. It also provides advice on how
to create an enabling environment to promote the adoption of digital healthcare.

There are many issues in the digital health space that can be addressed, as you can
see. We’ll discuss how microservices and domain-driven design connect in the following
section.

3.2 Microservices and Domain-Driven Design

A microservice is a small service that provides a tiny number of functions. Microservice
designs are gaining popularity as a means of building cross-platform applications based
on service-oriented architectures [31].

The Domain-Driven Design pattern provides concepts for subdividing microservices.
Domain-Driven Design (DDD) is a software development methodology that focuses on
modeling a domain based on contributions from domain experts [32].

6 D. S. M. de Oliveira et al.

Microservices use bounded contexts to identify microservices. Domain-driven
design provides concepts, patterns, and activities for building a domain model in its
pure form. However, it does not provide a step-by-step development approach. [31].

There is a lot of uncertainty about how to create programming interfaces for
web applications for microservices. Microservices effectiveness requires application
participation. [31].

The domain-driven design approach emphasizes that the core domain logic of
microservices should be determined by the application, while the user interface is con-
sidered when creating specific web APIs. In a microservice, there is no graphical user
interface, although there is one for a technical purpose. For a domain, you need to
consider a variety of use cases. [31].

Although the use of Domain-Driven Design may vary in practice, there are several
advantages. The layered architecture required by Domain-Driven Design distinguishes
the domain from other concerns. DDD is a framework that provides fundamental ideas
and processes for developing applications based on a microservice architecture. DDD
is about breaking down a software system into smaller components, and microservices
is about how they are divided. One of the main advantages of DDD and microservices
is the ability to reuse existing functionality. With the Web API, you can find and reuse
microservices [31].

You saw why we decided to try combining Domain-Driven Design with Microser-
vices to provide a new way for digital healthcare. In the section that follows, we’ll go
over how design systems and micro front-ends are related.

3.3 Micro Front-Ends and Design System

It is critical to understand the LICOR experiment’s micro frontend approach in light of
its definition and benefits within the software development process.

Many projects are divided into numerous components, team structures, and technolo-
gies to mitigate the problem of collaboration between teams and coworkers growing more
complicated and difficult as the size of a project and team membership grows, accord-
ing to [11]. A front-end team and one or more back-end teams may be used to build
horizontal layers.

Micro frontends provide a unique viewpoint. The application is sliced into vertical
sections. Each slice is developed from the database to the user interface and carried
out by a separate team. The client’s browser is used to link the various team front-ends
together [11]. Individual backend teams can now work on and modify system elements
independently, which enhances their long-term development prospects. Also, because
small services are more manageable than monolithic systems, their effective development
in growing teams becomes more likely in the long run [9].

The service, as you may recall, is made up of a number of smaller services. It also
includes several advantages that are particularly useful for team growth and product
development [9]. This method is connected to microservices architecture. The major
distinction is that the service now includes a user interface as well. This addition to
the service eliminates the need for a central front-end staff. Micro front-ends attempt
to keep things simple by lowering the complexity of each front-end while also adding
complexity to the architecture’s organizational layer, ensuring that subsystems are linked

LICOR: Beyond the Design System 7

to the overall system. This entails activities such as autonomous deployment methods
for continuously integrating and testing new micro frontend systems, or establishing
failover procedures in case a piece becomes unavailable for any reason. Improve cus-
tomer satisfaction. Customers receive everything they need directly from the vendor.
There are no API specialists or operational staff involved.

Let’s look at some of the organizational and technological advantages of this design
after you’ve learned what micro front-ends are [9]. Optimize for the creation of new fea-
tures. The primary motivation for employing a micro front-end is to improve development
speed. In addition, everyone working on a feature in the micro-front-end approach works
on the same team and communication is easier. The unified front end will no longer be
present. Modern architectures don’t have a concept of scaling front-end development,
as far as I know. The application is divided into smaller vertical systems with micro
frontends.

As a result, a micro frontend is [9]: Concentrates risk in a smaller area, making it
easier to understand; Has a smaller codebase that is easier to refactor or replace when
necessary.

Let’s look at the design of systems in the micro front-end environment based on
their features and a stakeholder analysis [9]: The connection between design systems
and frameworks. Frameworks are frequently used in web development to embed an
application within a supporting framework that aids the software’s growth. A design
system is a framework for creating user interfaces that adhere to principles, patterns, and
a design language. Because a compatible design system is required for the development
of a frontend, its framework has an impact on how it develops. However, because the
design system was built for a specific technology stack and is not framework-agnostic,
it would be unusable for various stacks.

4 Materials and Methodology

4.1 Evaluation Methodology Plan

We will hold a workshop with representatives of a software development team to learn
about their reactions during the activities and receive anonymous evaluations at the end.

The researchers will conduct this workshop in different steps following the evaluation
strategy used by Oran et al. [26].

The study will randomly divide participants into two groups and have them use
LICOR components in real-time development.

For this task, groups are to create an interactive UX / UI prototype for a local health
problem. The two groups will need to create a prototype in one hour, one with access to
LICOR UI components and the other with access to a free library.

After the time is up, 10 people will be randomly selected to use a prototype and
evaluate it based on SUS (System Usability Scale) (Table 1).

8 D. S. M. de Oliveira et al.

Table 1. Distribution of groups, scenarios, and specifications

Group Scenario Library

Group A A simple digital health specific domain app LICOR library

Group B Google material design library

5 Results and Discussion

This study is a work in progress. All results will be published in the full paper along the
year. A long-term study will assess how adopting the LICOR library may influence the
Brazilian software companie’s success in the second half of 2022.

6 Conclusion

A widespread problem is that digital health disparities exist and they must be addressed
to provide consistent benefits [29]. To really identify genuine needs and introduce effec-
tive changes in the software development process to support a constant, adaptable, and
successful digital health solution, we’ve established a scientific production calendar
for 2022/2023. Researchers are invited to submit a Systematic Literature Review, A/B
testing results, and software development process analysis.

Acknowledgement. To all of the HCII 2022 personnel, my Master Professor Dr. Fran Oliveira
and my family who encouraged me while I was writing this study.

References

1. de Godoy, M.E,, Filho, D.R.: Facing the BANI World. Int. J. Nutrology 14, e33—e33 (2021).
https://doi.org/10.1055/5-0041-1735848

2. Soto-Acosta, P.: COVID-19 pandemic: shifting digital transformation to a high-speed gear.
Inf. Syst. Manag. 37, 260-266 (2020). https://doi.org/10.1080/10580530.2020.1814461

3. Varajio, J.: Software development in disruptive times. Queueing Syst. 19, 94-103 (2021).
https://doi.org/10.1145/3454122.3458743

4. Abdi, M.: Fundamentals of design systems. https://iconline.ipleiria.pt/handle/10400.8/5839
(2021)

5. Kholmatova, A., Magazine, S.: Design Systems (Smashing eBooks). Smashing Media AG
(2017)

6. Fessenden, T.: Design Systems 101. https://www.nngroup.com/articles/design-systems-101/
(2021)

7. Gu, Q.: Design system as a service. http://urn.fi/URN:NBN:fi:aalto-202106217676 (2021)

8. Nguyen, D.: Why design systems are a single point of failure. https://www.chromatic.com/
blog/why-design-systems-are-a-single-point-of-failure/ (2020)

9. Klimm, M.C.: Design systems for micro frontends — an investigation into the development of
framework-agnostic design systems using Svelte and Tailwind CSS. https://epb.bibl.th-koeln.
de/frontdoor/index/index/docld/1666 (2021)

https://doi.org/10.1055/s-0041-1735848
https://doi.org/10.1080/10580530.2020.1814461
https://doi.org/10.1145/3454122.3458743
https://iconline.ipleiria.pt/handle/10400.8/5839
https://www.nngroup.com/articles/design-systems-101/
http://urn.fi/URN:NBN:fi:aalto-202106217676
https://www.chromatic.com/blog/why-design-systems-are-a-single-point-of-failure/
https://epb.bibl.th-koeln.de/frontdoor/index/index/docId/1666

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

21.
22.

23.
24.

25.
26.

27.
28.

29.

30.

31.

32.

LICOR: Beyond the Design System 9

PrimeTek: PrimeFaces.org, www.primefaces.org (2021). Accessed 21 Oct 2021

Geers, M.: Micro Frontends in Action. Manning Publications, New York, NY (2020)
Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley Professional (2003)

Fowler, M.: Domain Driven Design. https://martinfowler.com/tags/domain%?20driven%20d
esign.html (2021). Accessed 21 Oct 2021

Cycle, E.: Aprenda DDD (Domain Driven Design) do jeito certo. https://www.youtube.com/
watch?v=eUf5rhBGLAk (2021). Accessed 21 Oct 2021

Richardson, C.: Microservices From Design to Deployment (2021). Accessed 21 Oct 2021
Geers, M.: Micro Frontends, micro-frontends.org (2021). Accessed 21 Oct 2021

Google: Material Design (2021). Accessed 21 Oct 2021

Evans, E., Evans, E.J.: Domain-driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional (2004)

Figma: https://www.figma.com/contact/ (2022). Accessed 4 Jun 2022

Storybook: UI component explorer for frontend developers. https://storybook.js.org/ (2022).
Accessed 4 Jun 2022

Anima: Design to code: https://www.animaapp.com/. Accessed 4 June 2022

Zeroheight: document your design systems, together: https://zeroheight.com/ (2022).
Accessed 4 Jun 2022

Material Design: https://material.io/ (2022). Accessed 3 Jun 2022

Ant Design: https://ant.design/ (2022). Accessed 3 Jun 2022

Microsoft Design: https://www.microsoft.com/design/fluent/#/ (2022). Accessed 3 Jun 2022
Oran, A.C., Nascimento, E., Santos, G., Conte, T.: Analysing requirements communication
using use case specification and user stories. In: Proceedings of the XXXI Brazilian Sym-
posium on Software Engineering (SBES 2017), pp. 214-223. Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3131151.3131166

Carbon Design System: https://carbondesignsystem.com/ (2022). Accessed 3 Jun 2022

de Oliveira, A.C.S.EM.G.N.N.J.P. de S.Z.M.L. dos S.C.M.E.M. da S.M.L.D.: Brazil’s 2019—
2023 National digital health strategy action, monitoring and evaluation plan. SUS (Executive
Secretary of the Ministry of Health) IT Department (2019)

Jandoo, T.: WHO guidance for digital health: What it means for researchers. Digit Health. 6,
2055207619898984 (2020). https://doi.org/10.1177/2055207619898984

Labrique, A., Agarwal, S., Tamrat, T., Mehl, G.: WHO digital health guidelines: a milestone
for global health. NPJ Digit Med. 3, 120 (2020). https://doi.org/10.1038/s41746-020-00330-2
Steinegger, R.H., Giessler, P., Hippchen, B., Abeck, S.: Overview of a domain-driven design
approach to build microservice-based applications. In: The Thrid International Conference
on Advances and Trends in Software Engineering. Unknown (2017)

Vernon, V.: Implementing Domain-Driven Design. Addison-Wesley (2013)

http://www.primefaces.org
https://martinfowler.com/tags/domain%20driven%20design.html
https://www.youtube.com/watch?v=eUf5rhBGLAk
https://www.figma.com/contact/
https://storybook.js.org/
https://www.animaapp.com/
https://zeroheight.com/
https://material.io/
https://ant.design/
https://www.microsoft.com/design/fluent/#/
https://doi.org/10.1145/3131151.3131166
https://carbondesignsystem.com/
https://doi.org/10.1177/2055207619898984
https://doi.org/10.1038/s41746-020-00330-2

	LICOR: Beyond the Design System. A Proposal to Empower Teams to Develop Software in Compliance with the Principles of Accessibility, Usability, and Privacy by Design in the Extreme Contexts and Challenging Domains Post-COVID-19
	1 Introduction and Context
	1.1 Objectives
	1.2 Introducing the LICOR Library Prototype

	2 Related Works
	3 Theoretical Reference
	3.1 Design Systems
	3.2 Microservices and Domain-Driven Design
	3.3 Micro Front-Ends and Design System

	4 Materials and Methodology
	4.1 Evaluation Methodology Plan

	5 Results and Discussion
	6 Conclusion
	References

